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Summary. A stochastic discrete-time susceptible-exposed-infectious-recovered (SEIR) model for infectious
diseases is developed with the aim of estimating parameters from daily incidence and mortality time series
for an outbreak of Ebola in the Democratic Republic of Congo in 1995. The incidence time series exhibit
many low integers as well as zero counts requiring an intrinsically stochastic modeling approach. In order to
capture the stochastic nature of the transitions between the compartmental populations in such a model we
specify appropriate conditional binomial distributions. In addition, a relatively simple temporally varying
transmission rate function is introduced that allows for the effect of control interventions. We develop
Markov chain Monte Carlo methods for inference that are used to explore the posterior distribution of the
parameters. The algorithm is further extended to integrate numerically over state variables of the model,
which are unobserved. This provides a realistic stochastic model that can be used by epidemiologists to
study the dynamics of the disease and the effect of control interventions.

Key words: Control intervention; Ebola epidemics; Estimating transition rates; Latent process; Stochastic
SEIR model.

1. Introduction
Mathematical modeling has emerged as an important tool for
gaining understanding of the dynamics of the spread of in-
fectious diseases. The theoretical framework most commonly
used is based on the division of the human host population
into categories containing susceptible, infected but not yet
infectious (exposed), infectious, and recovered individuals.
These susceptible-exposed-infectious-recovered (SEIR) mod-
els are usually expressed as a system of differential equations
(see Anderson and May, 1991), where the rates of flow be-
tween compartments are determined by parameters specific
to the natural history of the disease. It is also recognized that
stochastic modeling is important (see, e.g., Bailey, 1975; Ball,
Mollison, and Scalia-Tomba, 1997; Andersson, 1999), in par-
ticular if disease incidence is small in the sense that the dis-
crete and stochastic nature of the transmission process may
not be neglected. This is the case for the observed Ebola out-
break studied in this article.

Inference for epidemic models is complicated by the fact
that first, one or several of the model variables may be unob-
served (latent), and second, data are often available at discrete
time points while the underlying true process is continuous in
time. In addition, model parameters may change over time,
for instance, if interventions to control the spread of the dis-
ease were introduced during the epidemics. In the case that
data are observed in continuous time, parameter estimates can
be obtained for complete data (Becker, 1976) and depend-
ing on the nature of incomplete data, estimators have also
been developed using martingale methods (Andersson and
Britton, 2000), exact forward-backward filtering (Fearnhead

and Meligkotsidou, 2004), or Markov chain Monte Carlo
(MCMC) methods (Gibson and Renshaw, 1998; O’Neill
and Roberts, 1999; O’Neill, 2002; Neal and Roberts, 2004;
Streftaris and Gibson, 2004). All of these studies are based
on the assumption that all event times or a subset thereof are
available to the investigator. Unfortunately, times at which
single events occur are rarely recorded. More commonly, ob-
served data sets are time series of counts of events that have
occurred during time intervals such as a day or a week.

In this study, we develop methods of inference in the case
that discrete-time epidemic data are available on an infec-
tious disease whose natural history pertains to an SEIR epi-
demic model. Likelihood-based inference for the case when
the time interval is equal to the generation period of the dis-
ease (chain-binomial model) has been considered by Bailey
(1975) and O’Neill and Roberts (1999). In the chain-binomial
model it is assumed that the generation period, that is, the
latent and infectious periods taken together, is fixed. Here we
relax this assumption by allowing both the latent and infec-
tious period to be stochastic and the data to be observed at
time points whose distances may be different from the length
of the generation period. The introduction of probability den-
sities for the transition of state variables allows us to formu-
late a probabilistic discrete-time model that, for a sufficiently
small interval length, provides a good approximation to the
underlying continuous-time process generated by the stochas-
tic SEIR model. The likelihood function of the data can then
be approximated on the basis of the transition densities.

Depending on what measurements are available, re-
searchers dealing with infectious disease data are confronted
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with different scenarios of what are important observed and
unobserved variables. The first step is to construct a proba-
bility model for the disease to be studied and to investigate
parameter identifiability under the scenario of the available
data. The use of MCMC allows for numerical integration over
the distribution of unobserved variables. This is important
in achieving parameter estimates with standard errors that
realistically reflect increased uncertainty when variables are
unobserved. We illustrate the performance of our approach
by applying it to a data set of an outbreak of Ebola in the
Democratic Republic of Congo in 1995. Chowell et al. (2004)
considered only a part of the available data on this outbreak
for estimating the parameters of a set of deterministic SEIR
differential equations with a time-varying transmission rate to
allow for the control intervention. Their estimation approach
is based on simulating the solutions to the deterministic SEIR
equations and identifying the parameter values that minimize
the sum of squared errors between the observed and simu-
lated cumulative number of cases. The optimization process
was started from 10 different initial parameter values and the
reported parameter estimate is the one that resulted in the
smallest sum of squares of error.

In this article we introduce a fully probabilistic model and
therefore perform a rigid likelihood-based inference using all
available data while incorporating uncertainty about unob-
served variables as well as errors in the reporting process.
More generally, we provide a model that can be used by
epidemic researchers to realistically simulate the stochastic
dynamics of Ebola epidemics in order to study the effect of
control intervention and other questions of biological interest.

We describe the data and the modeling approach in the
next section and, in Section 3, address inference based on
the likelihood of the model. We start by considering the case
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Figure 1. Data from the 1995 Ebola outbreak in the Democratic Republic of Congo recorded from March 1 (corresponding
to day 1 on the x-axis) to July 16. Top: daily counts of Ebola cases by date of symptom onset. Bottom: daily counts of death
from Ebola.

that all relevant variables are observed at daily time intervals.
In reality, the number of susceptible individuals who become
infected is a latent process and this, as well as some under-
reporting of variables, has to be considered by the estima-
tion algorithm. The application to the Ebola data produces
parameter estimates that characterize the natural history of
this disease and allows us to investigate the effectiveness of
the control intervention that took place.

2. Data and Model
2.1 Data
Ebola hemorrhagic fever, commonly known as Ebola, is trans-
mitted via physical contact with body fluids, secretions, tis-
sues, or semen from infected individuals (Chowell et al.,
2004). The disease is characterized by initial flu-like symp-
toms, which rapidly progress to vomiting, diarrhea, rash, and
internal and external bleeding. Once exposed, individuals go
through a latent period of approximately 6.3 days after which
they become infectious for a period that is estimated to be be-
tween 3.5 and 10.7 days (Breman et al., 1977). Most cases die
within 10 days of their initial infection, with the disease hav-
ing a mortality rate of 50–90% (World Health Organization,
2003). There are two known strains of the Ebola virus, the
Ebola-Sudan and the Ebola-Zaire, named after the countries
where they were first discovered (World Health Organization,
2003). Here we study data from the 1995 Ebola outbreak in
the Democratic Republic of Congo, which is well documented
by Khan et al. (1999). The data consist of two time series
(see Figure 1) recorded from March 1 to July 16, namely,
daily counts of Ebola cases by date of symptom onset, ac-
counting for a total of 291 cases, and daily counts of deaths
from Ebola, accounting for a total of 236 deaths. It is also
documented that the first case became ill on January 6, 1995,
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the last case died on July 16, and a total of 316 cases were
identified resulting in a rate of 81% fatality. The Ebola virus
was confirmed as the causative agent on May 9 when tests
were carried out on specimens collected from some of the early
cases. Control measures were immediately introduced. These
included, among others, the use of protective clothing, active
surveillance, and community education (Khan et al., 1999).
The epidemic lasted for about 200 days with control mea-
sures being introduced about 130 days after the start of the
epidemic. The exact starting time and evolution of the epi-
demic prior to March 1 is unobserved. Furthermore, from the
total number of 316 identified cases, it can be deduced that
the dates of symptom onset for 25 cases and the dates of re-
moval from the infectious class for 80 cases are not reported
in the given time series.

2.2 Model
Consider a time interval (t, t + h], where h represents the
length between the time points at which measurements are
taken, here h = 1 day. Let B(t) denote the number of sus-
ceptible individuals who become infected, C(t) the number
of cases by date of symptom onset, and D(t) the number of
cases who are removed (die or recover) from the infectious
class during that time interval. Furthermore, let τ ∗ denote
the time point when the epidemic goes extinct, that is, the
first time point at which there are no exposed or infectious
individuals in the population. Let B = {B(t)}τ∗t=0 represent
the time series of B(t) from the beginning to the end of the
epidemic and define C and D similarly. We use a discrete-time
approximation to the stochastic continuous-time SEIR model
(see Gibson and Renshaw, 1998). Define S(t), E(t), I(t), and
R(t) as the number of susceptible, exposed, infectious, and
removed individuals in the population at time t, respectively.
Given initial conditions S(0) = s0, E(0) = e0, I(0) = a, and
the population size N, the discretized stochastic SEIR model
is specified by

S(t + h) = S(t) −B(t), (1)

E(t + h) = E(t) + B(t) − C(t), (2)

I(t + h) = I(t) + C(t) −D(t), (3)

S(t) + E(t) + I(t) + R(t) = N, (4)

where

B(t) ∼ Bin(S(t), P (t)), C(t) ∼ Bin(E(t), pC),

D(t) ∼ Bin(I(t), pR) (5)

are random variables with binomial Bin(n, p) distributions
with probabilities:

P (t) = 1 − exp

[
−β(t)

N
hI (t)

]
, pC = 1 − exp(−�h),

pR = 1 − exp(−γh). (6)

The parameters β(t), 1/�, and 1/γ are the time-dependent
transmission rate, the mean incubation period, and the mean
infectious period, respectively. Mode and Sleeman (2000) de-
rived binomial densities as specified in (5, 6) for an SIR model
with three disease stages or compartments. The basic idea is
that transitions of individuals from the previous to the next

stage of the disease are seen as stochastic movements be-
tween the corresponding population compartments. In each
period an individual either stays or moves on to the next
compartment. Assuming that the time length that an indi-
vidual spends in a compartment is exponentially distributed
with some compartment-specific rate λ(t), then the probabil-
ity of extending the stay by a further period of length h is
exp(−λ(t)h) and the probability of leaving is therefore
1 − exp(−λ(t)h). The binomial distributions (5) result from
summation over the individual Bernoulli trials assuming that
they are independent and identical for all members of a com-
partment. Furthermore, noting that the compartment-specific
exponential rates are β(t)

N
I(t), �, and γ for the susceptible, ex-

posed, and infectious compartment leads to the probabilities
of staying in a compartment as specified in (6) (see Mode and
Sleeman, 2000). It follows that the exponential distribution
of the incubation and the infectious period is approximated
by the corresponding geometric distribution with means 1/pC

and 1/pR, respectively. Conditional on all information up to
time t, the binomial random variables B(t), C(t), and D(t)
are independent. The model further assumes that the pop-
ulation size N remains constant and that individuals mix
homogeneously.

In order to account for the control intervention we assume
that the transmission parameter β(t) is constant up to the
time point when the control measures are introduced and after
that decays exponentially. This can be formulated as

β(t) =

{
β, t < t∗

βe−q(t−t∗), t ≥ t∗,
(7)

where t∗ is the time point at which control measures are in-
troduced, β is the initial transmission rate, and q > 0 is the
rate at which β(t) decays for t > t∗. Chowell et al. (2004)
consider an exponential decay of the transmission rate but
introduce a third parameter that additionally characterizes
the decay. We found that for realistic sample sizes the geom-
etry of the likelihood function does not permit identification
of this parameter as its estimator is correlated with the expo-
nent q. Our model for the transmission rate in (7) is therefore
a more parsimonious parameterization. Note that the inter-
vention does not affect γ unless the disease is curable, which
is not the case for Ebola. The basic reproduction number R0

is defined as the average number of secondary cases gener-
ated by a primary case over his/her infectious period when
introduced into a large population of susceptible individuals
(Diekmann, Heesterbeek, and Metz, 1990). The constant R0

thus measures the initial growth rate of the epidemic and for
the model above it can be shown that R0 = β/γ (Hethcote,
2000). Furthermore, Chowell et al. (2004) define the time-

dependent effective reproductive number R0(t) = β(t)
γ

S(t)
N

as
the number of secondary cases per infectious case at time
t. Because S(t) ≈ N, it follows that R0(t) ≈ β(t)

γ
is a function

proportional to the time-varying transmission rate in (7). The
time point at which R0(t) assumes values smaller than 1 in-
dicates when control measures have become effective in con-
trolling the epidemic.

The epidemic model specified in (1)–(6) together with the
contact rate model (7) has parameter vector Θ = {β, q,
�, γ}, which we would like to estimate from knowledge of
initial conditions, population size, and from observation of
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{B, C, D} or a subset thereof. The temporal evolution
of the effective R0(t) is then derived from the estimated
parameters.

3. Inference
If initial conditions, the population size, and vectors
{B, C, D} are observed at time intervals of length h, then
here we say that the data are complete. Note that the time
series for {S(t), E(t), I(t)} are in this case fully determined
by applying equations (1)–(3) from given initial conditions.
Because B(t), C(t), and D(t) are conditionally independent,
the likelihood of the data can be approximated by

L(B,C,D |Θ) =

τ∗∏
t=0

g1(B(t) | ·)g2(C(t) | ·)g3(D(t) | ·), (8)

where g1, g2, and g3 stand for the binomial transition densities
specified in (5) and (6) conditioned on Θ and on all the infor-
mation up to time t. The maximum likelihood (ML) estimator
for Θ, and subsequently for R0 and R0(t), can be obtained by
maximizing (8).

As is the case in reality we furthermore assume that B
is not observed. For the purpose of this article we perform
data imputation within the framework of Bayesian MCMC
methods, which allows us to numerically integrate over the
probability distribution of the unobserved process. Because
the epidemic is observed until the end, we have that E(τ ∗) =
0, I(τ ∗) = 0, and the final number of susceptible individuals

is given by S(τ ∗) = N −
∑τ∗

j=0 C(t). The final size of the epi-
demic, defined as the total number of individuals who eventu-
ally contract the disease, is in this case given by m = S(τ ∗) −
s0. The series {I(t)} is also known as it can be reconstructed
from observed variables via equation (3). The series {S(t),
E(t)}, however, depends on the unobserved B. At each sweep
of the Markov chain we now impute the stochastic process
B and reconstruct the values of {S(t)} and {E(t)} using (1)
and (2). The augmented likelihood of B, C, and D is L(B, C,
D |Θ) as given in (8). Multiplying the likelihood by the prior
π(Θ) gives, up to a constant of proportionality, the posterior
distribution

π(Θ,B |C,D) ∝ L(B,C,D |Θ)π(Θ) (9)

that we wish to sample from. An MCMC algorithm that sam-
ples in turn from the conditional distributions π(B |C, D, Θ)
and π(Θ |C, D, B) produces draws from the desired π(Θ,
B |C, D). The general structure of the algorithm is thus as
follows:

(1) Initialize B. This can be done, for example, by setting
B(0) = m, with all the other positions in the vector filled
with zeros. For any initial B the series {S(t), E(t)} are
reconstructed using (1) and (2), respectively.

(2) Initialize the parameter vector Θ.
(3) Update B from B |C, D, Θ and compute new series for

{S(t)} and {E(t)} from (1) and (2).
(4) Update Θ from Θ |C, D, B.
(5) Repeat steps (3) and (4) until the required sample is

obtained after the chain has converged.

3.1 Sampling from B |C, D, Θ
A natural way of proposing B would be to sample each
B(t) from its conditional binomial distribution at each
time point. In addition, it is checked that proposals are

consistent with the observed final size and length of the

observed epidemic
∑τ∗−1

t=0 B(t) = m, E(t) ≥ 0, E(t) + I(t) >
0, ∀t < τ ∗, and I(τ ∗) + E(τ ∗) = 0. Unfortunately, this is rarely
the case for such proposals and thus this scheme is not very
efficient. Instead, we explicitly condition our proposals on
the observed extinction time by using the following updat-
ing scheme. To update the current realization of B, select a
time point t ′ (satisfying B(t ′) > 0) uniformly at random from
{0, h, 2h, . . . , τ ∗ − h} and set B(t′) = B(t′) − 1. Then, select t̃
∈ {0, h, . . . , τ ∗ − h} uniformly at random and set B(t̃) = B(t̃)
+ 1. Update the series {S(t), E(t)} using (1) and (2), respec-
tively, and check that all the conditions above are satisfied. If
so then the new configuration B′ is taken as a candidate pro-

posal for B and we accept B′ with probability min[1, π(B′ | ·)
π(B | ·) ].

At each iteration of the Markov chain, more than one ele-
ment of B may be updated by iterating the procedure above
a number of times (about 10% of the final size). This is known
to improve mixing and convergence of the MCMC algorithm
(Neal and Roberts, 2004).

3.2 Sampling from Θ |C, D, B
We update each element of Θ using a random walk proposal
where the variance of the Gaussian perturbations is tuned
such that the overall acceptance rate is between 20% and 40%
(Roberts and Rosenthal, 2001). Preliminary analysis showed
that imputation of B introduces a negative correlation be-
tween the chains for q and � and we find that convergence is
improved if we sample them jointly and independently of their
previous values using a bivariate normal proposal centered at
the mode of the bivariate conditional distribution (see, e.g.,
Chib and Greenberg, 1994). Independent gamma priors are
assigned to each of the parameters in Θ, that is, π(ζ) ∼
Γ(νζ , λζ), where ζ = β, q, γ, and �, where Γ(a, b) refers
to a gamma distribution with parameters a and b, mean a/b,
and variance a/b2.

3.3 Application to Simulated Data
First we test and demonstrate the performance of the algo-
rithm by applying it to simulated epidemic time series from
model (1)–(6) with parameter values s0 = 5,364,500, e0 = 1,
a = 0, β = 0.2, q = 0.2, � = 1/5 = 0.2, γ = 1/7 ≈ 0.143,
h = 1 day, and intervention time t∗ = 130. These parameter
values are, as far as possible, tuned to the data as they are
motivated by earlier studies on Ebola and by what is known
about its natural history (Breman et al., 1977; Khan et al.,
1999; Chowell et al., 2004). The simulated epidemic time se-
ries resulted in a final size of m = 297 and terminated at
τ ∗ = 172.

We apply the MCMC algorithm described in the pre-
vious section to the simulated data, pretending that B is
unobserved, and conduct inference using three parameter sets
for prior distributions. First {(νζ , λζ); ζ = β, �, γ, q} = {(2,
10), (2, 10), (2, 14), (2, 10)}, second {(20, 100), (20, 100),
(20, 140), (2, 10)}, and finally {(20, 40), (20, 40), (20, 40),
(20, 40)}. In the first two cases the mean of the distribution
is the true parameter value, with the priors being more infor-
mative in the latter. In the third case, the mean of each dis-
tribution is 0.5, which is substantially different from the true
values. We shall refer to this case as the noncentered prior
case. The prior distribution for q is chosen to be less informa-
tive in the first two cases because it is difficult to know a priori
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Table 1
Parameter estimates for simulated data. The first row displays the true parameter setting for the simulation.
ML estimates for complete data are shown in the second row. The third, fourth, and last rows give posterior

means using a vague, informative, and noncentered prior distributions, respectively. Posterior standard
deviations are given in parentheses.

Method β̂ q̂ �̂ γ̂ R̂0

True values 0.2 0.2 0.2 0.143 1.4
MLE 0.194 (0.0083) 0.170 (0.0173) 0.201 (0.0117) 0.144 (0.00837) 1.35 (0.097)
MCMC (vague) 0.191 (0.0115) 0.166 (0.0247) 0.192 (0.0246) 0.144 (0.00863) 1.33 (0.115)
MCMC (informative) 0.192 (0.0112) 0.164 (0.0246) 0.195 (0.0222) 0.144 (0.00783) 1.33 (0.104)
MCMC (noncentered) 0.203 (0.0120) 0.193 (0.0249) 0.211 (0.0237) 0.151 (0.00870) 1.35 (0.110)

the effect of the intervention. In each case, after discarding a
burn-in period of 10,000, a sample of size 1000 taken every 100
iterations of the chain was used to obtain posterior distribu-
tions. At each iteration of the Markov chain B was updated 30
times. Convergence of the Markov chain was assessed using a
series of runs for different starting values and also inspecting
the autocorrelation function. In all three cases the Markov
chain appeared to have converged after the burn-in period.
The posterior means and standard deviations of the parame-
ters are reported in Table 1. The posterior means are well in
agreement with the ML estimates obtained from the complete
data. As can be expected, the posterior standard deviations
for β, �, and q are larger demonstrating that the algorithm has
incorporated the increased level of uncertainty, as effectively
about 30% of the complete data are not available. Uncertainty
about the parameter γ is not affected by latent data, because
the component of the likelihood involving this parameter de-
pends only on {I(t)}, which is available from the observed
data. Table 1 suggests that the estimation method is not very
sensitive to the choice of prior information, as different choices
result in parameter estimates that are in agreement with the
ML estimates. The same estimation algorithm was also ap-
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Figure 2. Estimated posterior distributions for observed Ebola data with a vague prior (solid curves) and informative prior
(dotted curves).

plied imputing about 10% unknown dates on which exposed
individuals became infectious and about 25% unknown dates
on which infected cases recovered. Results not reported here
show that imputing these unknown dates together with B re-
sulted in posterior means in agreement with results presented
in Table 1.

4. Inference from Observed Ebola Data
4.1 Estimation and Results
The algorithm described above is applied to the real Ebola
data set where we impute the unobserved process B as well
as the unknown dates on which 25 cases became infectious
and on which 80 cases were removed. We assume that there
was initially one exposed individual and that the very first
case was exposed for 6 days (approximate mean incubation
period) prior to being diagnosed. Parameter constraints are
given by 0 < β < 1; q > 0 and, following Chowell et al.
(2004), we choose initial conditions from 1 < 1/� < 21 and
3.5 < 1/γ < 10.7 as well as their estimated population size
of N = 5,363,500 as in the simulations above. The choice of
prior distributions and the sampling methods are exactly the
same as in the previous section. Figure 2 shows the estimated
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Table 2
Posterior means and standard deviations (in parentheses) of
parameters estimated from observed Ebola data with a vague

prior (first column) and an informative prior (second
column). Estimates obtained by Chowell et al. (2004) as far as

comparable are reported in the third column.

Informative Chowell
Parameter Vague prior prior et al. (2004)

β 0.243 (0.020) 0.209 (0.017) 0.33 (0.006)
q 0.161 (0.009) 0.153 (0.010) —
1/� 9.431 (0.620) 10.11 (0.713) 5.30 (0.23)
1/γ 5.712 (0.548) 6.523 (0.564) 5.61 (0.19)
R0 1.383 (0.127) 1.359 (0.128) 1.83 (0.06)

posterior distributions of the parameters. Posterior means
and standard deviations are reported in Table 2. As seen in
the simulation study, the results do not vary noticeably for
the different choices of prior distribution. We estimate that
the posterior density of the mean infectious period has a mean
of about 7 days with a posterior standard deviation of about
half a day. We also estimate that the posterior density of the
mean incubation period has a mean of 10 days and a poste-
rior standard deviation of about 1 day. These estimates are
both higher than the least squares estimates of about 5.5 days
obtained for both parameters by Chowell et al. (2004) with
a remarkably low standard error of around 5 hours. Our esti-
mate of the transmission parameter β is 0.21, which is smaller
than the value of 0.33 obtained by Chowell et al. (2004) while
our posterior standard deviation for this parameter is about
three times higher than their reported standard error. Our es-
timate of R0 is around 1.4, which is roughly compatible with
the value of 1.8 obtained by Chowell et al. (2004). Our esti-
mated standard deviation of R0 is, however, two times higher
than their standard error. In summary, our posterior means
of the parameters are significantly different from estimates re-
ported by Chowell et al. (2004), and our posterior standard
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Figure 3. (a) Posterior predictive distribution of the final size for the observed Ebola data. A cross indicates the observed
final size of the Ebola epidemics and the reported p denotes its posterior predictive p value. (b) Cumulative number of cases
together with the posterior predictive mean and the 95% confidence bands corresponding to the observed number of cases
from March 1.

deviations are much larger than their corresponding standard
errors despite the fact that we have used twice as much data.
To a nonstatistician this might be conceived as a disadvantage
but it is important to note that the analysis presented here
is fully probabilistic, first about the stochastic and discrete
nature of the transmission of the disease and second about all
unobserved events and variables. Consequently, there is addi-
tional uncertainty and this is reflected in the posterior stan-
dard deviations of the parameters. The simulation study of
the previous section has shown very clearly that the presence
of latent variables increases the posterior standard deviation
of parameter estimates.

The estimated effective R0(t) curve decreases to values
smaller than 1 after 5 days into the control intervention. At
the end of the epidemic the effective reproductive number is
as low as 0.00268. This clearly indicates that the epidemic was
effectively brought under control by the intervention measures
introduced. Using simulations based on the posterior means of
the estimated parameters, we compare a scenario with and
without control intervention. We simulated 500 epidemics for
the case where the system was intervened at time point t∗ =
130 and another 500 epidemics where we allowed unimpeded
spread of the disease by setting β(t) = β. Results show that in-
tervention reduces the duration of the epidemic from approx-
imately 950 days to about 200 days and the final size from
about 3.5 million cases, corresponding to about two thirds
of the total population, to the observed size of just over 300
cases.

4.2 Model Diagnostics
The model fit can be assessed, for example, by using the pos-
terior predictive model checking technique based on a dis-
crepancy measure as suggested by Gelman, Meng, and Stern
(1996). Here we choose the final size as a discrepancy measure.
At each iteration of the Markov chain and given its current
state we compute an outcome of the final size of the epidemics.
This produces a posterior predictive distribution of final sizes
as plotted in Figure 3a. If the model fits the data then the
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observed discrepancy measure should not be in the tails of
this distribution and, in our case, a p value of 0.441 does not
indicate any evidence of lack of fit. The fit of the model is also
evident from Figure 3b, where the observed cumulative num-
ber of cases falls within the 95% posterior credible intervals
predicted by the model.

5. Discussion
We consider a probabilistic approach based on a stochastic
discrete-time approximation to the SEIR system with the
aim of modeling Ebola epidemics and introduce an MCMC
estimation algorithm for parameter estimation. Additional
parameters arise as the model also incorporates control in-
tervention that was introduced when the causative agent was
identified. An additional source of uncertainty arises as one
of the stochastic variables, namely, the number of susceptible
individuals who become exposed, is unobserved. The appro-
priate procedure for a model with latent variables is to inte-
grate over their probability distribution and MCMC provides
a feasible algorithm for doing this numerically. The increased
uncertainty is reflected in a larger spread of the posterior dis-
tribution of any of the parameters that are affected by the
latent process. Although this is an entirely different approach,
we have compared our results with parameter estimates ob-
tained by Chowell et al. (2004) who apply least squares es-
timation with the aim of fitting SEIR differential equations
to the observed daily cases by symptom onset. In contrast to
Chowell et al. (2004), we also use the available daily mortality
data. These correspond to the removal rates with the excep-
tion of 80 unobserved removals, which our analysis can also
account for. We find that our posterior means for the model
parameters are significantly different albeit still of compara-
ble magnitude. Larger differences are found as our posterior
standard deviations exceed the standard errors reported in
Chowell et al. (2004) by a multitude despite our using twice
as much data. This is, however, not surprising given the to-
tally different assumptions made about the probabilistic na-
ture of the transmission process as discussed in more detail
above. Our estimate of R0 is 1.36 for the Ebola data and, like
Chowell et al. (2004), we come to the conclusion that the in-
tervention measures were successful in controlling the disease.
We estimate that an unimpeded spread of the epidemic would
have lasted about five times longer and would have affected
two thirds of the population. However, with the disease hav-
ing such high mortality rates, it must not be ignored that an
even earlier onset of the control intervention would have saved
many more lives.

In developing the estimation method above, we have made
some assumptions that could be relaxed if the method is to
prove useful in other data scenarios. For example, the assump-
tion that the epidemic is observed from the beginning to the
end implies that the final size m is known, making the im-
plementation of the MCMC methods more straightforward.
It is possible that the epidemic could be observed from the
beginning to some time point T < τ ∗. In this case the final
size is unknown and the MCMC method can be modified as
follows. Let mT be the total number of exposed individuals
in (0, T]. This parameter is unobserved, but we know that∑T−1

t=0 C(t) ≤ mT ≤ s0. We can, therefore, at each iteration of

the MCMC, sample each B(t) from the corresponding bino-

mial distribution, and check that mT =
∑T−1

t=0 B(t) satisfies
the condition above, along with all other conditions for B′ to
be consistent with the observed epidemic. The proposed B′

can then be accepted or rejected as before.
There is scope for the estimation framework developed here

to be extended to other more complex scenarios such as,
for example, heterogeneously mixing populations, other dis-
tributional assumptions for the transition density (see Riley
et al., 2003 for a description of a model that incorporates
gamma-distributed waiting times), and other types of incom-
plete data. The probabilistic setup of the model assumes that
the latent and the infectious periods are geometrically dis-
tributed as there is no evidence from the Ebola literature
to suggest any alternative distributional form. Although we
have not seriously encountered problems of parameter identi-
fiability in this study, it is obvious that latent variables may
affect this. Parameters that may be estimated to an accept-
able precision for complete data may become unidentifiable
if one or more variables are not observed. Another important
source of missing data arises when the process is measured
too sparsely over time. For example, if we pretend that h is
1 week, we find that parameter estimates are imprecise as
they have considerably larger posterior standard deviations.
In such cases, methods that impute the unobserved process in
between (regularly or irregularly spaced) discrete time points
(Elerian, Chib, and Shephard, 2001; Durham and Gallant,
2002) can substantially improve parameter estimation. An im-
portant and realistic feature of the above model is that the
parameters of the transition densities, and thus the condi-
tional means and variances, are specified to change over time.
However, the changes are incremental with h and within any
time interval of length h are assumed to stay constant. The
quality of this constant rate approximation thus depends on
the unknown parameters of the system and therefore some
expert judgment is needed to assert that the dynamics of the
disease should not change noticeably within a time unit of
length h. In our case we have good reasons to believe that
h = 1 day is sufficiently small. This currently seems to be
the smallest length of time unit one could hope for such a
disease to be reported. Moreover, if we had data with time
units less than a day then the SEIR model introduced would
have to incorporate more detail, as for example, the inten-
sity of infectious contacts will not be constant over night and
day.

Implementation of the methods described in this article was
done with a modern standard computer using the OX lan-
guage of Doornik (1999) and the code can be made available
to interested readers on request to the authors. Computation
time was less than 45 minutes for each of the Markov chain
runs.
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